How do you factor #u^2-2u+1-v^2#?
1 Answer
Sep 2, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Use this with
#u^2-2u+1-v^2=(u-1)^2-v^2#
#color(white)(u^2-2u+1-v^2)=((u-1)-v)((u-1)+v)#
#color(white)(u^2-2u+1-v^2)=(u-1-v)(u-1+v)#
#color(white)(u^2-2u+1-v^2)=(u-v-1)(u+v-1)#