How do you simplify #5i*-i#?

2 Answers
Sep 15, 2016

#5i * -i = color(red)(5)#

Explanation:

#5i * -i#
#color(white)("XXX")=color(blue)(5)color(cyan)(i)color(orange)(-1)color(green)(i)#

#color(white)("XXX")=(color(blue)(5) * (color(orange)(-1))) xx (color(cyan)(i) * color(green)(i))#

#color(white)("XXX")=(-5) xx (-1)#

#color(white)("XXX")=+5#

Sep 15, 2016

5

Explanation:

The product is #5ixx-i=-5i^2#

#color(orange)"Reminder"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(i^2=(sqrt(-1))^2=-1)color(white)(a/a)|)))#

#rArr-5i^2=-5xx-1=5#