Apply the identities #cottheta = costheta/sintheta# and #csctheta = 1/sintheta#:
#cos^2theta/sin^2theta + 1/sintheta = 1#
#cos^2theta/sin^2theta + sintheta/sin^2theta = 1#
#(cos^2theta + sin theta)/sin^2theta = 1#
#cos^2theta + sin theta = sin^2theta#
Apply the identity #sin^2theta + cos^2theta = 1 ->cos^2theta = 1 - sin^2theta#
#1 - sin^2theta + sin theta - sin^2theta = 0#
#-2sin^2theta + sin theta + 1 = 0#
#-2sin^2theta + 2sintheta - sin theta + 1 = 0#
#-2sintheta(sin theta - 1) - 1(sin theta - 1) = 0#
#(-2sintheta - 1)(sin theta - 1) = 0#
#sintheta = -1/2 and sin theta = 1#
#theta = (7pi)/6, (11pi)/6 and pi/2#
However, since #pi/2# renders the equation undefined, that solution is extraneous. Hence, our solution set is #{(7pi)/6, (11pi)/6}#.
Hopefully this helps!