How do you use implicit differentiation to find dy/dx given #y=(x+y)^2#?

2 Answers
Oct 13, 2016

I got

#(dy)/(dx) = (2x + 2y)/(1 - 2x - 2y)#


Since #y# is a function of #x# (either #y# in the equation), the derivative with respect to #x# must include #(dy)/(dx)# whenever the derivative of #y# with respect to #x# is taken.

#d/(dx)[y(x)] = d/(dx)[(x+y)^2]#

#(dy)/(dx) = 2(x+y)^(1) * stackrel("Chain Rule")overbrace(d/(dx)[x+y])#

#= 2(x+y)(1 + (dy)/(dx))#

#= (2x + 2y)(1 + (dy)/(dx))#

#= 2x + 2x (dy)/(dx) + 2y + 2y(dy)/(dx)#

Now isolate the similar terms.

#(dy)/(dx) - 2x(dy)/(dx) - 2y(dy)/(dx) = 2x + 2y#

#(dy)/(dx)[1 - 2x - 2y] = 2x + 2y#

#=> color(blue)((dy)/(dx) = (2x + 2y)/(1 - 2x - 2y))#

Oct 13, 2016

#dy/dx = -(2x + 2y)/( 2x + 2y - 1)#

Explanation:

Here is an alternative answer.

Expand inside the parentheses:

#y = (x + y)(x + y)#

#y = x^2 + xy + xy + y^2#

#y = x^2 + 2xy + y^2#

#d/dx(y) = d/dx(x^2 + 2xy + y^2)#

#d/dx(y) = d/dx(x^2) + d/dx(2xy) + d/dx(y^2)#

#1(dy/dx) = 2x + 2y + 2x(dy/dx) + 2y(dy/dx)#

#-2x - 2y =- 1(dy/dx) + 2x(dy/dx) + 2y(dy/dx)#

#-2x - 2y = dy/dx(-1 + 2x + 2y)#

#dy/dx = -(2x + 2y)/( 2x + 2y - 1)#

Hopefully this helps!