The rate constant for a reaction at 25.0 degrees C is 0.010 #s^-1# and its activation energy is 35.8 KJ. How do you find the rate constant at 50.0 degrees C?
1 Answer
You compare them at two temperatures and determine the Arrhenius plot.
#color(white)(=>)k_2 = k_1e^((E_a)/R[1/(T_1) - 1/(T_2)])#
Be sure to use
You should get
The Arrhenius equations are:
#k_1 = Ae^(-E_a"/"RT_1)#
#k_2 = Ae^(-E_a"/"RT_2)#
The same reaction has the same activation energy
Now, divide these equations.
#k_1/k_2 = e^(-E_a"/"RT_1)/e^(-E_a"/"RT_2)#
taking the natural logarithm allows you to separate the right side.
#ln(k_1/k_2) = ln(e^(-E_a"/"RT_1)/e^(-E_a"/"RT_2))#
#= ln(e^(-E_a"/"RT_1)) - ln(e^(-E_a"/"RT_2))#
#= -E_a/(RT_1) - (-E_a)/(RT_2)#
#= -(E_a)/R[1/(T_1) - 1/(T_2)]#
So your final equation is:
#bb(ln(k_1/k_2) = -(E_a)/R[1/(T_1) - 1/(T_2)])#
To find the rate constant at a new temperature, try switching the sign on the left and right:
#-ln(k_1/k_2) = (E_a)/R[1/(T_1) - 1/(T_2)]#
#ln((k_1/k_2)^(-1)) = (E_a)/R[1/(T_1) - 1/(T_2)]#
#ln(k_2/k_1) = (E_a)/R[1/(T_1) - 1/(T_2)]#
There, now it's easier to solve for
#k_2/k_1 = e^((E_a)/R[1/(T_1) - 1/(T_2)])#