Question #35861

2 Answers
Nov 2, 2016

#y=(-1/20)x+-7/20#

Explanation:

The Average rate function is the straight line drawn between the points at each end of the interval.

So first we need to find our points,

#y=1/(x-2)#

#y(-3)=1/((-3)-2)#

#y(-3)=1/-5#

giving us #(-3,-1/5)#

#y(-2)=1/((-2)-2)#

#y(-2)=1/-4#

giving us #(-2,1/-4)#

So the gradient is equal to #"rise"/"run"#

rise#=-1/4-(-1/5)#

rise#=-1/20#

run#=-2-(-3)#

run#=1#

So #"rise"/"run"=(-1/20)/1=-1/20#

This is our average rate of change between the two points.

to find the function we use,

#y=mx+c#

#y=(-1/20)x+c#

And subbing in one of our points, #(-3,-1/5)#

#(-1/5)=(-1/20)(-3)+c#

#c=-7/20#

leaving us with the average rate function between #[-3,-2]# as,

#y=(-1/20)x+-7/20#

Oct 15, 2017

Average rate of change #=-(1/20)#
#x+20y+7=0#

Explanation:

mathbitsnotebook.com

#y=1/(x-2)#
Given #a=-3, b=-2#
#f(a)=1/(-3-2)=-(1/5)#
#f(b)=1/(-2-2)=-(1/4)#

Average rate of change #=(f(b)-f(a))/(b-a)=(-(1/4)+(1/5))/((-2)-(-3)#
#=-(1/20)/1=-(1/20)#

To find the equation :
#a=x=-3,y=f(a)=-(1/5), slope = -(1/20)#

Equation is #y=mx+c#
#-(1/5)=-(1/20)(-3)+c#
#c=-(1/5)-(3/20)=-(7/20)#

#y=-(1/20)x-(7/20)#
#x+20y+7=0#