How do you find the value of #tan((11pi)/12)#?

1 Answer
Nov 8, 2016

# -2 + sqrt3#

Explanation:

Trig unit circle -->
#tan ((11pi)/12 = - tan (pi.12)#
Find #tan (pi/12).#
Use the trig identity, and call tan (pi/12) = t
#tan 2a = (2tan a)/(1 - tan^2 a)#
#tan (pi/6) = 1/sqrt3 = (2t)/(1 - t^2)#
Cross multiply
#1 - t^2 = 2sqrt3t#
#t^2 + 2sqrt3t - 1 = 0#
Solve this quadratic equation for t by using improved quadratic formula (Socratic Search)
#D = d^2 = b^2 - 4ac = 12 + 4 = 15# --> #d = +- 4#
There are 2 real roots:
#t = -b/(2a) +- d/(2a) = - sqrt3 +- 2#
t1 = - sqrt3 + 2
t2 = - sqrt3 - 2 (rejected because tan (pi/12) is positive)
Finally:
tan ((11pi)/12) = - tan (pi/12) = - t1 = - 2 + sqrt3
Check by calculator.
tan ((11pi)/12) = - tan (pi/12) = - tan 15 = - 0.267. OK