How do you find the equation for the tangent line to #sin^2x# at #x=pi/3#?

2 Answers
Nov 8, 2016

# y = 1/2sqrt(3) x +3/4- pi/6sqrt(3) #

Explanation:

Let # y =sin^2x # then we need to find the gradient of the tangent to y when #x=pi/3#, which means we need to find the derivative and find #dy/dx# when #x=3#

If we differentiate wrt #x'# using the chain rule we have:
# y =sin^2x #
# :. dy/dx =2sinxcosx #
# :. dy/dx =sin(2x) # (as sin2A-=2sinAcosA)

So, When # x=pi/3 => dy/dx=sin(2pi)/3 =1/2sqrt3#

Also, When # x=pi/3 => y=sin^2pi/3 = (1/2sqrt3)^2=3/4 #

So the tangent passes through #(pi/2, 3/4)# and has gradient #m=1/2sqrt3#

If you use the equation # y-y_1=m(x-x_1)# then the tangent equation is:
# y - 3/4 = 1/2sqrt(3) x - pi/3 ) #
# :. y - 3/4 = 1/2sqrt(3) x - pi/6sqrt(3) #
# :. y = 1/2sqrt(3) x +3/4- pi/6sqrt(3) #

enter image source here

Start by finding the corresponding y-coordinate that the tangent passes through.

#y = sin^2(pi/3) =(sqrt(3)/2)^2 = 3/4#

Now, determine the derivative.

#y = sin^2x -> y = (sinx)(sinx)#

#y' = cosx xx sinx + cosx xx sinx#

#y' = cosxsinx + cosxsinx#

#y' = 2cosxsinx#

#y' = sin2x#

We can find the slope of the tangent.

#m_"tangent" = sin((2pi)/3) = sqrt(3)/2#

Next, find the equation of the tangent.

#y - y_1 = m(x- x_1)#
#y - 3/4 = sqrt(3)/2(x - pi/3)#

#y - 3/4 = sqrt(3)/2x - (pisqrt(3))/6#

#y = sqrt(3)/2x - (pisqrt(3))/6 + 3/4#

#y = sqrt(3)/2x - (2pisqrt(3) - 3)/12#

Hopefully this helps!