What is the derivative of #f(x)=ln(2x^2-4x)/x#?

1 Answer
Nov 12, 2016

#f'(x) = ((2x^2)/(x^2 - 2) - ln(2x^2 - 4x))/(x^2)#

Explanation:

Start by using the chain rule to differentiate #y = ln(2x^2 - 4x)#.

Let #y = lnu# and #u = 2x^2 - 4#.

#dy/dx = 1/u xx 4x = (4x)/(2x^2 - 4) = (2(2x))/(2(x^2 - 2)) = (2x)/(x^2 - 2)#

By the quotient rule:

#f'(x) = ((2x)/(x^2 - 2) xx x - 1 xx ln(2x^2 - 4x))/(x)^2#

#f'(x) = ((2x^2)/(x^2 - 2) - ln(2x^2 - 4x))/(x^2)#

Hopefully this helps!