How do you find #dy/dx# by implicit differentiation of #coty=x-y#?

1 Answer
Nov 17, 2016

We start by defining the derivative of #coty#. Recall that #cotx = 1/tanx = 1/(sinx/cosx) = cosx/sinx#.

#:.coty = cosy/siny#

#:.(coty)' = (-siny xx siny(dy/dx) - (cosy xx cosy)dy/dx)/(siny)^2#

#:.(coty)' = (-sin^2y(dy/dx) - cos^2y(dy/dx))/sin^2y#

#:.(coty)' = -(sin^2y(dy/dx) + cos^2y(dy/dx))/sin^2y#

#:.(coty)' =- (dy/dx)/sin^2y#

#:.(coty)' = -dy/dxcsc^2y#

Now, the rest of the relation.

#-csc^2y(dy/dx) = 1 - 1(dy/dx)#

#-csc^2y(dy/dx) + 1(dy/dx) = 1#

#dy/dx(-csc^2y + 1) = 1#

#dy/dx = 1/(1 - csc^2y)#

From the relation #1+cot^2y=csc^2y# we see that #1-csc^2y=-cot^2y#. We can rewrite the derivative if we wish.

#dy/dx=-1/cot^2y#

If we want, we can use the original function #coty=x-y#.

#dy/dx=-1/(x-y)^2#

Hopefully this helps!