How do you integrate #int (2x^3 - 4x^2 -15x + 5) / (x^2 -2x - 8)# using partial fractions?

1 Answer
Nov 19, 2016

#=x^2 + 3/2ln|x - 4| - 1/2ln|x + 2| + C#

Explanation:

First divide the numerator by the denominator using long division.

enter image source here

So, our new integral is #int(2x + (x + 5)/(x^2 - 2x - 8))dx#

We now can write #(x + 5)/(x^2 - 2x - 8)# in partial fractions.

First of all, #x^2 - 2x - 8# can be factored as #(x- 4)(x + 2)#.

#A/(x- 4) + B/(x + 2) = (x + 5)/((x- 4)(x + 2))#

#A(x + 2) + B(x- 4) = x + 5#

#Ax + 2A + Bx - 4B = x + 5#

#(A + B)x + (2A - 4B) = x + 5#

We can now write a system of equations.

#{(A + B = 1), (2A - 4B = 5):}#

Solving:

#B = 1 - A#

#2A - 4(1 - A) = 5#

#2A - 4 + 4A = 5#

#6A = 9#

#A = 3/2#

#B = -1/2#

Hence, the partial fraction decomposition of #(x + 5)/(x^2- 2x - 8)# is #3/(2(x - 4)) - 1/(2(x + 2))#

The integral now becomes:

#int(2x + 3/(2(x - 4)) - 1/(2(x + 2)))dx#

Which can be readily integrated as;

#x^2 + 3/2ln|x - 4| - 1/2ln|x + 2| + C# using the rule #int(1/u)du = ln|u| + C# and #int(x^n)dx = (x^(n + 1))/(n + 1)#. You can check the result by differentiating.

Hopefully this helps!