How do you find the second derivative of # ln(x^2+10)# ?

1 Answer
Nov 21, 2016

#(d^2y)/(dx^2) = (2(10 - x^2))/(x^2 + 10)^2#

Explanation:

We find the first derivative , and then differentiate again.

#y = ln(x^2 + 10)#

#e^y = x^2 + 10#

#e^y(dy/dx) = 2x#

#dy/dx= ( 2x)/(e^(y)#

#dy/dx= (2x)/(e^ln(x^2 + 10)#

#dy/dx = (2x)/(x^2 + 10)#

#(d^2y)/(dx^2) = (2(x^2 + 10) - 2x(2x))/(x^2 + 10)^2#

#(d^2y)/(dx^2) = (2x^2 + 20 - 4x^2)/(x^2 + 10)^2#

#(d^2y)/(dx^2) = (2(10 - x^2))/(x^2 + 10)^2#

Hopefully this helps!