Let's apply
#(a+b)^n=((n),(0))a^nb^0+((n),(1))a^(n-1)b+((n),(2))a^(n-3)b^2+.....+((n),(n))a^0b^n.#
Where, #((n),(p))=(n!)/((n-p)!p!)#
#((n),(1))=(n!)/((n-1)!(1!))=n#
In our case, #a=x^2# , #b=y# and #n=7#
#(x^2+y)^7=((7),(0))(x^2)^7+((7),(1))(x^2)^6y+((7),(2))(x^2)^5y^2+((7),(3))(x^2)^4y^3+((7),(4))(x^2)^3y^4+((7),(5))(x^2)^2y^5+((7),(6))(x^2)y^6+((7),(7))y^7#
#(x^2+y)^7=x^14+7x^12y+21x^10y^2+35x^8y^3+35x^6y^4+21x^4y^5+7x^2y^6+y^7#
#((7),(0))=1#
#((7),(1))=7#
#((7),(2))=21#
#((7),(3))=35#
#((7),(4))=35#
#((7),(5))=21#
#((7),(6))=7#
#((7),(7))=1#