How do you integrate #int sqrt(13+25x^2)# using trig substitutions?

1 Answer
Nov 25, 2016

To integrate an irrational function with a sum of squares under the root, you use the substitution with the tangent.

Explanation:

First reduce the radical to a sum of squares:

#int(sqrt(13+25x^2))dx = 1/5int(sqrt((sqrt(13)/5)^2+x^2))dx#

Pose #x=sqrt(13)/5tan(t)# and as #(d tan(t))/dt = sec^2(t)#

#dx=sqrt(13)/5sec^2(t)dt#

#int(sqrt(13+25x^2))dx = 1/5int(sqrt(13/25+13/25tan^2(t))sqrt(13)/5sec^2(t)dt = 13/125int(sqrt(1+tan^2(t))sec^2(t)dt#

Use the trigonometric identity:

#1+tan^2t=sec^2t#

#int(sqrt(13+25x^2))dx = 13/125int(sqrt(sec^2(t))sec^2(t)dt =#
#= 13/125int|sec(t)|^3dt#.

Now, to integrate this last integral let's limit ourselves in the interval #t in [-pi/2,pi/2]# where #sec(t) # is positive and use integration by parts:

#intsec^3(t)dt = int (sect*sec^2t)dt = intsect * d(tant) = sect tant -int tan t* d(sec t) = sect tant -int tan ^2t*sec t dt = #

but #tan^2t = sec^2t-1#, so

#intsec^3(t)dt = sect tant + int (sect -sec^3t)dt= sect tant +int sect dt -int sec^3(t)tdt#

or

#2intsec^3(t)dt = sect tant +int sect dt #

Finally:

#intsec^3(t)dt = 1/2sect tant +1/2 ln(|sec t + tan t|)#

Now reverse the substitution:

#tan t = 5/sqrt(13)x#

and #sect = sqrt(1+tan^2(t)) = sqrt(1+25/13x^2)#

So:

#int(sqrt(13+25x^2))dx = 5/(2sqrt(13))xsqrt(1+25/13x^2)+1/2ln(|5/sqrt(13)x+sqrt(1+25/13x^2)|)#