How do you find the amplitude, period, phase shift given #y=1+8cos(6x-pi)#?

1 Answer
Nov 27, 2016

#8,pi/3,pi/6#

Explanation:

The standard form of the #color(blue)"cosine function"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=acos(bx+c)+d)color(white)(2/2)|)))#

where amplitude = | a | , period #=(2pi)/b#

phase shift #=-c/b" and vertical shift" =d#

Here a = 8 , b = 6 ,c#=-pi# and d = 1

Hence amplitude #=|8|=8,"period" =(2pi)/6=pi/3#

#"phase shift" =-(-pi)/6=pi/6#

#"vertical shift" =1=((0),(1))#