#sec(x-y) =1/cos(x-y)= 1/(cosxcosy+sinxsiny)#
#cscx =1/sinx=5/3 => sinx = 3/5#
#cosx =+-sqrt(1-(3/5)^2) = +-sqrt(1-9/25) =+- sqrt(16/25) =+-4/5#
#tany=12/5 => sin^2y/(1-sin^2y) = (12/5)^2#
#25sin^2y+144sin^2y-144 =0#
#169sin^2y=144#
#siny=+-12/13#
#cosy=sqrt(1-(12/13)^2)=+-5/13#
As the tangent is positive, #siny# and #cosy# have the same sign.
For the sake of simplicity let's assume #x# and #y# are in #(0,pi/2)#
so we take all the positive solutions:
#sinx=3/5#
#cosx=4/5#
#siny=12/13#
#cosy=5/13#
#sec(x-y) == 1/(4/5*5/13+3/5*12/13)=1/(20/65+36/65)=65/56#
Alternatively, #x# could be in the second quadrant, where:
#cosx=-4/5#
or #y# could be in the third quadrant where:
#siny=-12/13#
#cosy=-5/13#