How do you find the exact value #sec(x-y)# if #cscx=5/3,tany=12/5#?

2 Answers
Nov 30, 2016

The answer is #=-65/16#

Explanation:

#sec(x-y)=1/cos(x-y)=1/(cosxcosy-sinxsiny)#

#cscx=1/sinx=5/3#

Therefore, #sinx=3/5#

#cos^2x+sin^2x=1#

#cos^2x=1-9/25=16/25#

#cosx=4/5#

#tany=12/5#

#tan^2y+1=1/cos^2y#

#1/cos^2y=1+144/25=169/25#

#cosy=5/13#

#sin^2y=1-cos^2y=1-25/169=144/169#

#siny=12/13#

#sec(x-y)=1/(cosxcosy-sinxsiny)#

#=1/(4/5*5/13-3/5*12/13)#

#=1/(4/13-36/65)#

#=-65/16#

Nov 30, 2016

#sec(x-y)=65/56# if #x,y in (0.pi/2)#

Explanation:

#sec(x-y) =1/cos(x-y)= 1/(cosxcosy+sinxsiny)#

#cscx =1/sinx=5/3 => sinx = 3/5#

#cosx =+-sqrt(1-(3/5)^2) = +-sqrt(1-9/25) =+- sqrt(16/25) =+-4/5#

#tany=12/5 => sin^2y/(1-sin^2y) = (12/5)^2#

#25sin^2y+144sin^2y-144 =0#

#169sin^2y=144#

#siny=+-12/13#

#cosy=sqrt(1-(12/13)^2)=+-5/13#

As the tangent is positive, #siny# and #cosy# have the same sign.

For the sake of simplicity let's assume #x# and #y# are in #(0,pi/2)#
so we take all the positive solutions:

#sinx=3/5#
#cosx=4/5#
#siny=12/13#
#cosy=5/13#

#sec(x-y) == 1/(4/5*5/13+3/5*12/13)=1/(20/65+36/65)=65/56#

Alternatively, #x# could be in the second quadrant, where:

#cosx=-4/5#

or #y# could be in the third quadrant where:
#siny=-12/13#
#cosy=-5/13#