How do you solve tan x + sec x = 2?

2 Answers
Dec 8, 2016

Given equation

#secx+tanx=2........[1]#

Again we know

#sec^2x-tan^2x=1.......[2]#

Dividing [2] by [1]

#secx-tanx=1/2.......[3]#

Adding [1] and [3] we get

#2secx=2+1/2=5/2#

#=>secx=5/4#

#=>cosx=4/5=cosalpha#,where #alpha=cos^-1(4/5)#

So #x=2npi±alpha" where "n in ZZ#

Again subtracting [3] from [1] we get a solution in another form

#2tanx=3/2#

#tanx=3/4=tanbeta#,where #beta=tan^-1(3/4)#

So #x=npi+beta" where "n in ZZ#

Alternatve

Given equation

#secx+tanx=2#

#=>1/cosx+sinx/cosx=2#

#=>(sqrt(1+sinx))^2/sqrt((1+sinx)(1-sinx))=2#
[#1+sinx!=0#]

#=>(sqrt(1+sinx))/sqrt(1-sinx)=2#

#=>(1+sinx)/(1-sinx)=4#

#=>(1+sinx)=4(1-sinx)#

#=>5sinx=3=>sinx=3/5=sinsin^-1(3/5)#

#=>x=npi+(-1)^nsin^-1(3/5)#

Dec 8, 2016

#x = arcsin(3/5) + 2pin#.

Explanation:

Here's another way of solving this problem.

We know that #tantheta = sintheta/costheta# and #sectheta = 1/costheta#. So,

#sinx/cosx + 1/cosx= 2#

#(sinx + 1)/cosx= 2#

#sinx + 1 = 2cosx#

Square both sides.

#(sinx + 1)^2 = (2cosx)^2#

#sin^2x+ 2sinx + 1 = 4cos^2x#

We use the identity #sin^2theta + cos^2theta = 1-> cos^2theta = 1 - sin^2theta#.

#sin^2x + 2sinx + 1 = 4(1 - sin^2x)#

#sin^2x+ 2sinx + 1 = 4 - 4sin^2x#

#5sin^2x + 2sinx - 3 = 0#

We let #t = sinx#.

#5t^2 + 2t - 3 = 0#

#5t^2 + 5t - 3t - 3 = 0#

#5t(t + 1) - 3(t + 1) = 0#

#(5t - 3)(t + 1)= 0#

#t = 3/5 and -1#

#sinx = 3/5 and sinx = -1#

#x = pi - arcsin(3/5) + 2pin, arcsin(3/5) + 2pin, (3pi)/2 + 2pin#

However, #pi - arcsin(3/5) + 2pin# and #(3pi)/2 + 2pin# extraneous. #pi - arcsin(3/5)# since tangent is negative in quadrant II and so is cosine. #(3pi)/2# is extraneous since it is an asymptote in the secant function and in the tangent function.

Therefore, the only actual solution is #x = arcsin(3/5) + 2pin#, where #n# is an integer.

Hopefully this helps!