How do you find the angel between u=27i+14j, v=i-7j?

1 Answer
Dec 13, 2016

#71°#(3sf)

Explanation:

The angle #theta# between two vectors #vec A# and #vec B# is related to the modulus (or magnitude) and scaler (or dot) product of #vec A# and #vec A# by the relationship:

enter image source here

# vec A * vec B = |A| |B| cos theta #

By convention when we refer to the angle between vectors we choose the acute angle.

So for this problem, let the angle betwen #vecu# and #vecv# be #theta# then:

#vec u=27 ulhati+14 ulhatj=((27),(14))# and #vec v=1 ulhati -7 ulhatj=((1),(-7))#

The modulus is given by;

# |vec u| = |((27),(14))| \ \ = sqrt(27^2+14^2)=sqrt(729+196)=sqrt(925) #
# |vec v| = |((1),(-7))| = sqrt(1^2+ -7^2) =sqrt(1+49) =sqrt(50) #

And the scaler product is:

# vec u * vec v = ((27),(14)) * ((1),(-7))#
# \ \ \ \ \ \ \ \ \ \ = (27)(1) + (14)(-7)#
# \ \ \ \ \ \ \ \ \ \ = 27-98#
# \ \ \ \ \ \ \ \ \ \ = -71#

And so using # vec A * vec B = |A| |B| cos theta # we have:

# -71 = sqrt(925) * sqrt(50) * cos theta #
# :. cos theta = (-71)/(sqrt(46250))#
# :. cos theta = -0.33014 ... #
# :. theta = 109.277 °#
# :. theta = 109 °#(3sf)

So the acute angle between the vectors is #71°#(3sf)