How do you express # y=|x^2-9|+|x^4-16|+|x^6-1|#, sans the symbol #|...|#?
2 Answers
#y = sqrt((x^2-9)^2)+sqrt((x^4-16)^2)+sqrt((x^6-1)^2)#
Explanation:
#abs(x) = sqrt(x^2)#
This is a one dimensional version of the distance formula.
So:
#y = sqrt((x^2-9)^2)+sqrt((x^4-16)^2)+sqrt((x^6-1)^2)#
graph{y = sqrt((x^2-9)^2)+sqrt((x^4-16)^2)+sqrt((x^6-1)^2) [-2.5, 2.5, 18.5, 30]}
If you want to cover Complex values too use:
#abs(z) = sqrt(zbar(z))#
So:
#y = sqrt((x^2-9)bar((x^2-9)))+sqrt((x^4-16)bar((x^4-16)))+sqrt((x^6-1)bar((x^6-1)))#
Four piecewise definitions can be given. See explanation..
Explanation:
graph{-x^2-x^4+x^6+24 [-80, 80, -40, 40]}
The given equation is the combined form, for the four piecewise
definitions
As I am unable to get the all-in-one graph, the first piece can be
seen as the central part of the inserted second graph, with zenith at
(0, 26), and ends at
The second is in the first graph, with ends at #(+-24) and (+-2,
68)#. Likewise, interested readers can secure the other two pieces.
The common points
( 2-tangent ) nodes of this continuous function.
graph{sqrt(-x^2-x^4-x^6+26)^2 [-80, 80, -40, 40]}