How do you use partial fractions to find the integral #int (sinx)/(cosx+cos^2x)dx#?
1 Answer
Explanation:
We start with a substitution. Let
#=>intsinx/(u + u^2) xx (du)/-sinx#
#=> int -1/(u + u^2)du#
We now factor the denominator to
#A/u + B/(u + 1) = -1/(u(u +1))#
#A(u + 1) + B(u) = -1#
#Au + A + Bu = -1#
#(A + B)u + A = -1#
Now write a system of equations:
Solving, we get:
Thus, the partial fraction decomposition is
We can now integrate using the rule
#=> ln|u + 1| - ln|u| + C#
Finally, reinsert the value of
#=>ln|cosx + 1| - ln|cosx| +C#
Hopefully this helps!