How do you find #dy/dx# by implicit differentiation given #y=cos(x+y)#?

1 Answer
Dec 21, 2016

#dy/dx = -sin(x + y)/(1 + sin(x + y))#

Explanation:

Method 1: Expand and use the product rule

We expand using the formula #cos(A + B) = cosAcosB - sinAsinB#.

#y = cosxcosy - sinxsiny#

#d/dx(y) = d/dx(cosxcosy - sinxsiny)#

#d/dx(y) = d/dx(cosxcosy) - d/dx(sinxsiny)#

Remember that we are differentiating with respect to #x# here.

#1(dy/dx) = -sinx(cosy) - siny(dy/dx)(cosx) - (cosx(siny) + cosy(sinx)dy/dx)#

Solve for #dy/dx#:

#1(dy/dx) + sinycosx(dy/dx) + cosysinx(dy/dx) = -sinxcosy - cosxsiny#

#dy/dx(1 + sinycosx + cosysinx) = -(sinxcosy + cosxsiny)#

#dy/dx = -(sinxcosy + cosxsiny)/(1 + sinycosx + cosysinx)#

#dy/dx= -(sin(x + y))/(1 + sin(x + y))#

Method 2: Use the chain rule

Let #y= cosu# and #u = x + y#. Then #dy/(du) = -sinu# and #(du)/dx = 1 + dy/dx#.

The derivative is given by #color(magenta)(dy/dx= dy/(du) xx (du)/dx#.

#dy/dx = -sinu xx (1 + dy/dx)#

#dy/dx = -sinu - dy/dxsinu#

#dy/dx +dy/dxsinu = -sinu#

#dy/dx(1 +sinu) = -sinu#

#dy/dx = -sinu/(1+ sinu)#

Since #u = x+ y#:

#dy/dx = -sin(x + y)/(1 + sin(x + y))#

Hopefully this helps!