How do you solve #2x^3+4+2i=0#?

1 Answer
Dec 23, 2016

The roots are:

#x_1 = root(3)(2+i)#

#x_2 = omega root(3)(2+i)#

#x_3 = omega^2 root(3)(2+i)#

Explanation:

Given:

#2x^3+4+2i=0#

Divide through by #2# to get:

#x^3+2+i = 0#

Subtract #2+i# from both sides to get:

#x^3 = 2+i#

This has roots:

#x_1 = root(3)(2+i)#

#x_2 = omega root(3)(2+i)#

#x_3 = omega^2 root(3)(2+i)#

where #omega = -1/2+sqrt(3)/2i# is the primitive Complex cube root of #1#.

If you prefer these roots in #a+bi# form, then it can be done with trigonometric functions:

First note that:

#abs(2+i) = sqrt(2^2+1^2) = sqrt(5)#

#Arg(2+i) = tan^(-1)(1/2)#

Hence, using de Moivre's formula:

#x_1 = root(6)(5)cos(1/3 tan^(-1) (1/2)) + i root(6)(5)sin(1/3 tan^(-1) (1/2))#

#x_2 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(2pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(2pi)/3)#

#x_3 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(4pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(4pi)/3)#