How do you find the exact value of #2sin^2theta+3costheta-3=0# in the interval #0<=theta<360#?

1 Answer
Dec 24, 2016

#0, 60^@, 300^@, 360^@#

Explanation:

Replace in the equation #sin^2 t# by #(1 - cos^2 t)# -->
#2 - 2cos^2 t + 3cos t - 3 = 0#
#- 2cos^2 t + 3cos t - 1 = 0#
Solve this quadratic equation for cos t.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos t = 1 and #cos t = c/a = (-1)/(-2) = 1/2#

Use trig table and unit circle -->
a. cos t = 1 --> arc t = 0 and t = #2pi#
b. #cos t = 1/2# --> arc #t = +- pi/3#
The co-terminal arc of (-pi/3) is (5pi)/3
Answers for #(0, 2pi)#:
#0, pi/3, (5pi)/3, 2pi#, or
#0, 60^@, 300^@, 360^@#