How do you solve #3(2x-1)>=4(2x-3)-3#?
1 Answer
Jan 2, 2017
Explanation:
Distribute brackets on both sides of the inequality.
#6x-3>=8x-12-3rArr6x-3>=8x-15# Collect terms in x on the left side and numeric values on the right side.
subtract 8x from both sides.
#6x-8x-3>=cancel(8x)cancel(-8x)-15#
#rArr-2x-3>=-15# add 3 to both sides.
#-2xcancel(-3)cancel(+3)>=-15+3#
#rArr-2x>=-12# To solve for x, divide both sides by - 2
#color(blue)"Note"# when we multiply/divide an inequality by a negative value we must#color(blue)"reverse the inequality sign"#
#(cancel(-2) x)/cancel(-2)<=(-12)/(-2)larr" reverse sign"#
#rArrx<=6" is the solution"#