How do you find the derivative of #y=(e^(5x^4))/(e^(4x^2+3))#?

1 Answer
Jan 7, 2017

#dy/dx = (20x^3 - 8x)e^(5x^4 - 4x^2 - 3)#

Explanation:

Use the exponent law #x^a/x^n = x^(a - n)# to write as a single exponent.

#y= e^(5x^4 - (4x^2 + 3))#

#y = e^(5x^4 - 4x^2 - 3)#

Differentiate this using the chain rule. Let #y = e^u# and #u = 5x^4 - 4x^2 - 3#. We know that #d/dx(e^x) = e^x# and that #(du)/dx = 20x^3 - 8x#. Hence:

#dy/dx = dy/(du) * (du)/dx#

#dy/dx = e^u * 20x^3 - 8x#

#dy/dx = (20x^3 - 8x)e^(5x^4 - 4x^2 - 3)#

Hopefully this helps!