Question #7a6ca
2 Answers
Explanation:
Take the MacLaurin series for
Substitute:
Now multiply by
#x^2ln(1+x^3) = -sum_(n=1)^(oo) (-1)^(n)x^(3n + 2)/(n)#
#= x^5 - x^8/2 + x^11/3 - x^14/4 + . . . #
Recall that
#sum_(n=0)^(oo) t^n = 1/(1-t)# ,
which is the derivative of
#sum_(n=0)^(oo) (-x^3)^n = 1/(1 + x^3)# ,
(whose derivative has no sign change), so that
#intsum_(n=0)^(oo) (-1)^(n)(x^3)^(n)dx = sum_(n=0)^(oo) int(-1)^(n)(x^3)^ndx#
#= sum_(n=0)^(oo) [(-1)^(n)1/(n+1)(x^3)^(n+1)] + C#
#= sum_(n=1)^(oo) [(-1)^(n-1)1/(n)x^(3n)] + C#
#= -sum_(n=1)^(oo) [(-1)^(n)1/(n)x^(3n)] + C#
#= ln(1 + x^3)# ,#x >= 0# ,where
#C = ln(1 + 0^3) = 0# .
Since the sum depends only on
#color(blue)(x^2ln(1+x^3) = -sum_(n=1)^(oo) (-1)^(n)x^(3n + 2)/(n))#
#= color(blue)(x^5 - x^8/2 + x^11/3 - x^14/4 + . . . )#
whereas that for
#ln(1+x^3) = x^3 - x^6/2 + x^9/3 - x^12/4 + . . . #
which indeed was just multiplied by