How do you integrate #int x/sqrt(x^2-25)# by trigonometric substitution?
2 Answers
Explanation:
You do not need a trigonometric substitution to solve this integral.
Substituting:
you have:
and substituting back
As has been shown, trigonometric substitution is a waste of time and effort, but it can be used with the substitution
#intx/sqrt(x^2-25)dx=int(5sectheta)/sqrt(25sec^2theta-25)(5secthetatanthetad theta)#
Note that
#=int(5sectheta)/(5tantheta)(5secthetatanthetad theta)=5intsec^2thetad theta=5tantheta+C#
Note that
#=5sqrt(sec^2theta-1)+C=5sqrt(x^2/25-1)+C=5sqrt((x^2-25)/25)+C#
#=sqrt(x^2+25)+C#