How do you simplify #sqrt(-2)^6#?
1 Answer
Jan 15, 2017
Explanation:
Note that if
#(a^m)^n = overbrace((a^m)xx(a^m)xx...xx(a^m))^"n times"#
#color(white)((a^m)^n) = overbrace(overbrace((axxaxx...xxa))^"m times"xxoverbrace((axxaxx...xxa))^"m times"xx...xxoverbrace((axxaxx...xxa))^"m times")^"n times"#
#color(white)((a^m)^n) = overbrace(axxaxx...xxa)^"mn times"#
#color(white)((a^m)^n) = a^(mn)#
So in our example we find:
#(sqrt(-2))^6 = (sqrt(-2))^(2*3) = (sqrt(-2)^2)^3 = (-2)^3 = -8#
Footnote
I demonstrated
For example:
#-1 = (-1)^1 = (-1)^(3/2*2/3) != ((-1)^(3/2))^(2/3) = (-i)^(2/3) = 1/2-sqrt(3)/2i#