How do you find at equation of the tangent line to the graph #y=(cosx)/(sinx+2)# at x =pi/2?
1 Answer
Explanation:
Start by finding the y-coordinate of tangency.
#y = cos(pi/2)/(sin(pi/2) + 2)#
#y= 0/(1 + 2)#
#y = 0#
Now differentiate using the quotient rule.
#y' = (-sinx(sinx + 2) - cosx(sinx))/(2 + sinx)^2#
#y' = (-sin^2x - 2sinx - cosxsinx)/(2 + sinx)^2#
The slope of the tangent is given by evaluating your point
#m_"tangent" = (-sin^2(pi/2) - 2sin(pi/2) - cos(pi/2)sin(pi/2))/(2+ sin(pi/2))^2#
#m_"tangent" = (-(1)^2 - 2(1) - 0(1))/(2 + 1)^2#
#m_"tangent" = (-1 - 2)/(2 + 1)^2#
#m_"tangent"= -3/9=-1/3#
We now find the equation of the tangent.
#y - y_1 = m(x - x_1)#
#y - 0 = -1/3(x - pi/2)#
#y = pi/6-1/3x #
Hopefully, this helps!