How do you find the exact value of #sin 84# using the sum and difference, double angle or half angle formulas?

1 Answer
Jan 31, 2017

#sin84^@=1/8(sqrt15+sqrt3+sqrt(10-2sqrt5))#

Explanation:

Let #A=36^@#, hence #5A=180^@# and

#2A=180^@-3A# and #sin2A=sin(180^@-3A)=sin3A#

or #2sinAcosA=3sinA-4sin^3A# and as #sinA!=0#, dividing by it we get

#2cosA=3-4sin^2A# and #2cosA=3-4(1-cos^2A)#

i.e. #4cos^2A-2cosA-1=0#

and using quadratic formula #cosA=(2+-sqrt(2^2-4xx4xx(-1)))/8#

= #(2+-sqrt20)/8=(sqrt5+1)/4#

As #cos36^@=sin54^@=(sqrt5+1)/4#

and #cos54^@=sqrt(1-(sqrt5+1)^2/16)=1/4sqrt(16-(5+1+2sqrt5)#

= #sqrt(10-2sqrt5)/4#

#sin84^@=sin(54^@+30^@)#

= #sin54^@cos30^@+cos54^@sin30^@#

= #(sqrt5+1)/4xxsqrt3/2+sqrt(10-2sqrt5)/4xx1/2#

= #1/8(sqrt15+sqrt3+sqrt(10-2sqrt5))#