How do you factor completely #4x^3-16x^2-9x+36#?
1 Answer
Feb 1, 2017
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this with
#4x^3-16x^2-9x+36 = (4x^3-16x^2)-(9x-36)#
#color(white)(4x^3-16x^2-9x+36) = 4x^2(x-4)-9(x-4)#
#color(white)(4x^3-16x^2-9x+36) = (4x^2-9)(x-4)#
#color(white)(4x^3-16x^2-9x+36) = ((2x)^2-3^2)(x-4)#
#color(white)(4x^3-16x^2-9x+36) = (2x-3)(2x+3)(x-4)#