How do you convert #2sinθ-3cosθ=r# to rectangular form?

2 Answers
Feb 5, 2017

The answer is #(x+3/2)^2+(y-1)^2=13/4#

Explanation:

To convert from polar coordinates #(r,theta)# to rectangular coordinates #(x,y)#, we use the following equations

#x=rcostheta#, #=>#, #costheta=x/r#

#y=rsintheta#, #=>#, #sintheta=y/r#

#x^2+y^2=r^2#

Therefore

#2sintheta-3costheta=r#

#2/ry-3/rx=r#

#2y-3x=r^2#

#2y-3x=x^2+y^2#

#x^2+3x+y^2-2y=0#

#(x^2+3x+9/4)+(y^2-2y+1)=9/4+1#

#(x+3/2)^2+(y-1)^2=13/4#

This is the equation of a circle, center #(-3/2,1)# and radius #=sqrt13/2#

Feb 5, 2017

#2y-3x=x^2+y^2# or #y=2+-sqrt(-x^2-3x+1)#

Explanation:

You are given an equation in terms of radius, #r#, and angle, #theta#. In order to find the rectangular form, you must know the relationships between the polar coordinate system, #(r,theta)#, and the rectangular coordinate system, #(x, y)#.

  • #r=sqrt(x^2+y^2)#
  • #sin(theta)=y/r=y/sqrt(x^2+y^2)#
  • #cos(theta)=x/r=x/sqrt(x^2+y^2)#
  • #tan(theta)=y/x#

Now we can replace the #theta# and #r# in the original problem with expressions in terms of #x# and #y#.

#2sin(theta)-3cos(theta)=r#
#2y/sqrt(x^2+y^2)-3x/sqrt(x^2+y^2)=sqrt(x^2+y^2)#

Multiply both sides of the equation by #sqrt(x^2+y^2)#

#2y-3x=x^2+y^2#

Solving for #y#, you get

#y^2-2y=-x^2-3x# ...separate x's and y's
#y^2-2y+1=-x^2-3x+1# ...complete the square
#(y-2)^2=-x^2-3x+1# ...complete the square
#y-2=+-sqrt(-x^2-3x+1)# ...square root both sides
#y=2+-sqrt(-x^2-3x+1)# ...add 2 to both sides

The graph of this is a circle

WolframAlpha ProPremium