How do you find the antiderivative of #int xsqrt(1-x^2) dx#?
2 Answers
The answer is
Explanation:
We perform this by substitution
Let
Therefore,
Explanation:
Here's an alternative answer using trig substitution.
Let
#=intsinthetasqrt(1 - sin^2theta) * costheta d theta#
#=intsintheta sqrt(cos^2theta) * costheta d theta#
#=int sintheta costhetacostheta d theta#
#=int sin thetacos^2theta d theta#
Now make a substitution. Let
#=int sin theta cos^2theta * (du)/(-sintheta)#
#=-int u^2du#
#=-1/3u^3 + C#
#=-1/3cos^3theta + C#
We know from our initial substitution that
#=-1/3(1 - x^2)^(3/2) + C#
Hopefully this helps!