How do you integrate #int 1/sqrt(9x^2+6x-8)# by trigonometric substitution?
1 Answer
The answer is
Explanation:
Complete the square under the square root.
#int 1/sqrt(9(x^2 + 2/3x + 1/9 - 1/9)- 8)dx#
#int 1/sqrt(9(x + 1/3)^2 - 1 - 8)dx#
#int 1/sqrt(9(x + 1/3)^2 - 9)dx#
Now let
#int 1/sqrt(9u^2 - 9)du#
#int 1/sqrt(9(u^2 - 1))du#
We are of the form
#int 1/sqrt(9(sec^2theta - 1)) * secthetatantheta d theta#
#int 1/sqrt(9tan^2theta) * sec thetatantheta d theta#
#int 1/(3tantheta) * secthetatantheta d theta#
#1/3intsectheta d theta#
This is a relatively well known integral which can be derived here
#1/3ln|sectheta + tantheta| + C#
Recall the original trig substitution was
#1/3ln|u + sqrt(u^2 - 1)| + C#
Now reverse the other substitution.
#1/3ln|x +1/3 + sqrt((x + 1/3)^2 - 1)| + C#
Hopefully this helps!