How do you differentiate #f(x)=cos^2x#?
2 Answers
Feb 4, 2017
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))#
#"Express " f(x)=cos^2x=(cosx)^2#
#"let "u=cosxrArr(du)/(dx)=-sinx#
#"then "y=u^2rArr(dy)/(du)=2u#
#rArrdy/dx=2u(-sinx)# change u back into terms of x
#rArrdy/dx=-2sinxcosx#
#color(orange)"Reminder" sin2x=2sinxcosx#
#rArrdy/dx=-sin2x#
Feb 16, 2017
Explanation:
By chain rule
let
Therefore
But
Reminder