How do you factor completely #12x^3y + 6x^2y^2 - 9xy^3#?
2 Answers
Explanation:
Given:
#12x^3y+6x^2y^2-9xy^3#
Note that all of the terms are of degree
#12x^3y+6x^2y^2-9xy^3 = 3xy(4x^2+2xy-3y^2)#
We can factor the remaining quadratic by completing the square as follows:
#4x^2+2xy-3y^2 = 1/4(16x^2+8xy-12y^2)#
#color(white)(4x^2+2xy-3y^2) = 1/4((4x)^2+2(4x)(y)+y^2-13y^2)#
#color(white)(4x^2+2xy-3y^2) = 1/4((4x+y)^2-(sqrt(13)y)^2)#
#color(white)(4x^2+2xy-3y^2) = 1/4((4x+y)-sqrt(13)y)((4x+y)+sqrt(13)y)#
#color(white)(4x^2+2xy-3y^2) = 1/4(4x+(1-sqrt(13))y)(4x+(1+sqrt(13))y)#
Putting it all together:
#12x^3y+6x^2y^2-9xy^3 = 3/4xy(4x+(1-sqrt(13))y)(4x+(1+sqrt(13))y)#
Explanation:
Making
Solving