Using the power rule we can determine the derivatives of #f(x)# of all orders:
#f(x) = (1-x)^(-1)#
#(df)/dx = (-1)(-1)(1-x)^(-2)= (1-x)^(-2)#
#(d^2f)/(dx^2) = (-1)(-2)(1-x)^(-3)= 2(1-x)^(-3)#
and we can easily see that:
#(d^nf)/(dx^n) =(n!) /(1-x)^(n+1)#
For #x=3# then the Taylor coefficients are:
#f^((n))(3)/(n!) = (n!)/( (1-3)^(n+1)(n!)) = (-1)^(n+1)/2^(n+1)#
And the Taylor series is:
#1/(1-x) = sum_(n=0)^oo (-1)^(n+1)(x-3)^n/2^(n+1)#
or:
#1/(1-x) = -1/2 sum_(n=0)^oo ((3-x)/2)^n#
We can obtain the same result directly by substituting #t=x-3# in the original expression:
#1/(1-x) = 1/(1-t-3) = -1/(t+2) = -1/2 1/(1+t/2)#
Now, #1/(1+t/2)# is the sum of a geometric series of ratio #(-t/2)#, so:
#1/(1-x) = -1/2 sum_(n=0)^oo (-t/2)^n#
and substituting back #-t = 3-x#:
#1/(1-x) = -1/2 sum_(n=0)^oo ((3-x)/2)^n#