How do you find all solutions of the equation #cos(x+pi/6)-cos(x-pi/6)=1# in the interval #[0,2pi)#?

2 Answers
Mar 1, 2017

See below.

Explanation:

#cos(x + a) - cos(x - a) = -2 sin x sin a#

so

#-2 sin x sin a=1->sinx = -1/(2sina) = -1/(2 xx 1/2) = -1#

so

#x = arcsin(-1)+2kpi=- pi/2+2kpi# then

#x = 3/2pi#

Mar 2, 2017

#x = (3pi)/2#

Explanation:

Here's a different way of proceeding. Use the sum and difference formulae #cos(A + B) = cosAcosB - sinAsinB# and #cos(A - B) = cosAcosB + sinAsinB#.

#cosxcos(pi/6) - sinxsin(pi/6) - (cosxcos(pi/6) + sinxsin(pi/6)) = 1#

#cosx(sqrt(3)/2) - sinx(1/2) - (cosx(sqrt(3)/2) + sinx(1/2)) = 1#

#sqrt(3)/2cosx - 1/2sinx - sqrt(3)/2cosx - 1/2sinx = 1#

#-sinx = 1#

#sinx = -1#

#x = (3pi)/2#

Hopefully this helps!