How do you find all solutions of the equation #cos(x+pi/6)-cos(x-pi/6)=1# in the interval #[0,2pi)#?
2 Answers
Mar 1, 2017
See below.
Explanation:
so
so
Mar 2, 2017
Explanation:
Here's a different way of proceeding. Use the sum and difference formulae
#cosxcos(pi/6) - sinxsin(pi/6) - (cosxcos(pi/6) + sinxsin(pi/6)) = 1#
#cosx(sqrt(3)/2) - sinx(1/2) - (cosx(sqrt(3)/2) + sinx(1/2)) = 1#
#sqrt(3)/2cosx - 1/2sinx - sqrt(3)/2cosx - 1/2sinx = 1#
#-sinx = 1#
#sinx = -1#
#x = (3pi)/2#
Hopefully this helps!