How do you find the antiderivative of #int sqrt(x^2-1) dx#?

2 Answers
Mar 5, 2017

# = 1/2 x sqrt(x^2 - 1) - 1/2 cosh^(-1) (x) + C#

Explanation:

When you say you want the "anti-derivative" of #int sqrt(x^2-1) dx#, I am assuming you mean you want the "anti-derivative" that is #int sqrt(x^2-1) dx#.

Otherwise you are looking for: #int ( int sqrt(x^2-1) dx) \ dx#.

For #int sqrt(x^2-1) \ dx#, there is a convenient hyperbolic relationship:

#cosh^2 z - sin^2 z = 1#

If we let #x = cosh z, dx = sinh z \ dz #, we get this:

#int sqrt(cosh^2 z -1) sinh z \ dz#

#int sqrt(sinh^2 z) sinh z \ dz#

#= int sinh^2 z \ dz#

By the hyperbolic double angle formula (#cosh 2z = 1 + 2 sinh^2 z#):

#=1/2 int cosh 2z - 1\ dz#

#=1/2 ( 1/2 sinh 2z - z) + C = 1/4 sinh 2z - 1/2 z + C qquad triangle#

Now:

#sinh 2z = 2 sinh z cosh z = #

# = 2 sqrt(x^2 - 1) * x#

So #triangle# becomes:

# = 1/2 x sqrt(x^2 - 1) - 1/2 cosh^(-1) (x) + C#

NB

If you like we can take #cosh^(-1) (x)# and move it from hyperbolic to natural log status:

let #y = cosh^(-1) (x)#

#x = cosh y#

#= (e^y + e^(-y))/2#

#implies x = (e^y + e^(-y))/2#

#implies 2 x e^ y = e^(2y) + 1#

#implies (e^(y))^2 - 2 x e^ y + 1 = 0#

From the quadratic formula:

#e^y = (2x pm sqrt(4x^2 - 4 ))/(2) = x pm sqrt(x^2 - 1 )#

#implies y = ln ( x pm sqrt(x^2 - 1 ))#

So #triangle# becomes:

# = 1/2 x sqrt(x^2 - 1) - 1/2 ln ( x pm sqrt(x^2 - 1 )) + C#

Mar 5, 2017

#intsqrt(x^2-1)# #dx=1/2(xsqrt(x^2-1)-ln|x+sqrt(x^2-1)|)+"c"#

Explanation:

We are trying to evaluate #intsqrt(x^2-1)# #dx#.

Firstly, we should let #x=secu#

Then our integrand becomes #sqrt(sec^2u-1)=tanu# and

#dx/(du)=secutanu rArrdx=secutanu# #du#

#intsqrt(x^2-1)# #dx=intsecutan^2u# #du=#
#intsecu(sec^2u-1)# #du=intsec^3u-secu# #du=#
#intsec^3u# #du-intsecu# #du#

The integral of #secu# is a standard and is evaluated as #ln|secu+tanu|+"C"#.

The integral of #sec^3u# will require integration by parts. If you wish to know how to do it, I will add it later. If you already do, just follow the working.

#intsec^3u=1/2secutanu+1/2ln|secu+tanu|+"C"#

#intsec^3u# #du-intsecu# #du=#
#1/2secutanu+1/2ln|secu+tanu|+"C"-ln|secu+tanu|+"C"#
#=1/2secutanu-1/2ln|secu+tanu|+"c"#

Now all that's left is to rewrite the answer in terms of #x#.

#1/2secutanu-1/2ln|secu+tanu|+"c"=#

#1/2xsqrt(x^2-1)-1/2ln|x+sqrt(x^2-1)|+"c"#

How to evaluate #intsec^3u# #du#:

#intsec^3u# #du=intsec^2usecu# #du#

#f(x)=secu rArr f'(x)=secutanu#
#g'(x)=sec^2u rArr g(x)=tanu #

#intsec^2usecu# #du=secutanu-intsecutan^2u# #du=#
#secutanu-intsecu(sec^2u-1)# #du=#
#secutanu-(intsec^3u# #du-intsecu# #du)=#

#intsec^3u# #du=secutanu-intsec^3u# #du+intsecu# #du#

#2intsec^3u# #du=secutanu+ln|secu+tanu|#

#intsec^3u# #du=1/2(secutanu+ln|secu+tanu|)+"C"#