#sinx+cosx=sinxcosx#
#(sinx+cosx)^2=sin^2xcos^2x#
#sin^2x+2sinxcosx+cos^2x=sin^2xcos^2x#
#1+2sinxcosx=sin^2xcos^2x#
Let #y=sinxcosx#
#1+2y=y^2#
#y^2-2y-1=0#
#y=1+-sqrt2#
#sinxcosx=1+-sqrt2#
#sin2x = 2sinxcosx therefore 1/2sin2x=sinxcosx#
#1/2sin2x=1+-sqrt2#
#sin2x=2+-2sqrt2#
#2+2sqrt2>1 therefore# it has no solutions
#sin2x=2-2sqrt2#
#2x=arcsin(2-sqrt2)#
#x=1/2arcsin(2-sqrt2)#
Checking this value, we see that the two sides of the equation don't have the same value. This is because #sinx <0# but #abs(cosx)>abs(sinx)#, so one side of the eqn is positive whilst the other is negative.
So we add #pi# to the value to make #sin# positive and #cos# negative but we also keep #abs(cosx)>abs(sinx)#, so now both sides are negative and, more importantly, have the same value.
So #x=pi+1/2arcsin(2-2sqrt2)#