How do you factor #x^3+2x^2+14x+7x^2#?

2 Answers
Mar 20, 2017

See the entire solution process below:

Explanation:

First, group and combine like terms:

#x^3 + 2x^2 + 7x^2 + 14x ->#

#x^3 = (2 + 7)x^2 + 14x#

#x^3 + 9x^2 + 14x#

Next, factor out an #x# from each term in the expression:

#(x * x^2) + (x * 9x) + (x * 14) ->#

#x(x^2 + 9x + 14)#

Because #7 + 2 = 9# and #7 * 2 = 14# we can factor the quadratic term as:

#x(x + 7)(x + 2)#

Mar 20, 2017

#x(x+2)(x+7)#

Explanation:

#x^3+2x^2+14x+7x^2#

#:.=x^3+2x^2+7x^2+14x#

#:.=x^3+9x^2+14x#

#:.=x(x^2+9x+14)#

#:.=x(x+2)(x+7)#