How to calculate this limit?#lim_(n->oo)sum_(k=1)^n(1/2^k+1/3^k)#
1 Answer
Explanation:
The general term of a geometric series can be written:
#a_k = a*r^(k-1)#
where
Then we find:
#(1-r) sum_(k=1)^n a_k = sum_(k=1)^n a*r^(n-1) - r sum_(k=1)^n a*r^(n-1)#
#color(white)((1-r) sum_(k=1)^n a_n) = sum_(k=1)^n a*r^(n-1) - sum_(k=2)^(n+1) a*r^(n-1)#
#color(white)((1-r) sum_(k=1)^n a_n) = a+color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - a*r^n#
#color(white)((1-r) sum_(k=1)^n a_k) = a(1 - r^n)#
Divide both ends by
#sum_(k=1)^n a_k = (a(1-r^n))/(1-r)#
Both
So we find:
#sum_(k=1)^n (1/2^k + 1/3^k) = sum_(k=1)^n 1/2^k + sum_(k=1)^n 1/3^k#
#color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1/2(1-(1/2)^n))/(1-1/2) + (1/3(1-(1/3)^n))/(1-1/3)#
#color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1-(1/2)^n) + 1/2(1-(1/3)^n)#
Then:
#lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k) = lim_(n->oo) ((1-(1/2)^n) + 1/2(1-(1/3)^n))#
#color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 1+1/2#
#color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 3/2#