How do you find the derivative of #(ln * e^x)/(e^x-1)#?
1 Answer
Mar 28, 2017
Call the function
#f(x) = x/(e^x - 1)#
We now use the quotient rule to find the derivative. If
Here we have
#f'(x) = (x(e^x - 1) - e^x(x))/(e^x - 1)^2#
#f'(x) = (xe^x - x - xe^x)/(e^x - 1)^2#
#f'(x) = -x/(e^x - 1)^2#
Hopefully this helps!