Here's an alternative approach. Note that #tantheta = sin theta/costheta#.
#sintheta/costheta = sqrt(2)sintheta#
Multiply both sides by #costheta#.
#sintheta/costheta * costheta = sqrt(2)sintheta*costheta#
Now recognize that #sin2theta = 2sinthetacostheta#.
#sintheta = sqrt(2)sinthetacostheta#
Multiply the right side by #2/2#
#sintheta = 2sqrt(1/2)sinthetacostheta#
#sintheta = sqrt(1/2)sin2theta#
#sintheta/(2sinthetacostheta) = 1/sqrt(2)#
#1/(2costheta) = 1/sqrt(2)#
#sqrt(2) = 2costheta#
#sqrt(2)/2 = costheta#
This is the rationalized form of #1/sqrt(2)#.
#1/sqrt(2) = costheta#
This has solutions #theta = pi/4, (7pi)/4#.
Hopefully this helps!