How do you test for convergence of #Sigma n e^-n# from #n=[1,oo)#?

3 Answers
Apr 1, 2017

The series:

#sum_(n=1)^oo n e^(-n)#

is convergent.

Explanation:

We can determine the convergence of the series:

#sum_(n=1)^oo n e^(-n)#

using the ratio test:

#lim_(n->oo) abs (a_(n+1)/a_n) = lim_(n->oo) ((n+1)e^(-(n+1)))/(n e^(-n))#

#lim_(n->oo) abs (a_(n+1)/a_n) = lim_(n->oo) (n+1)/n (e^(-n) e^(-1))/(e^(-n))#

#lim_(n->oo) abs (a_(n+1)/a_n) = 1/e lim_(n->oo) (n+1)/n = 1/e < 1#

As the limit is less than #1# the series is convergent.

Apr 1, 2017

See below.

Explanation:

#sum_(k=0)^m e^(nx) = (e^((m+1)x)-1)/(e^x-1)#

#sum_(k=0)^m n e^(nx) = d/(dx)sum_(k=0)^m e^(nx) = (e^x + e^((2 + m) x) m - e^((1 + m) x) (1 + m))/(e^x-1)^2#

and

#sum_(k=0)^m n e^(-nx) = (e^-x + e^(-(m+2) x) m - e^(-(m+1) x) (m+1))/(e^-x-1)^2#

so, as we can observe, the series is convergent for #x in RR^+#

because

#lim_(m->oo) (e^-x + e^(-(m+2) x) m - e^(-(m+1) x) (m+1))/(e^-x-1)^2=-e^x/(e^x-1)^2#

and for #x = 1# the limit is

#e/(e-1)^2#

Apr 1, 2017

The series is convergent by the ratio test.

Explanation:

#sum_(n=1)^(oo)n e^(-n)#

#=sum_(n=1)^(oo)n/ e^(n)#

Use the ratio test:
#color(blue)("If "lim_(n->oo)|a_(n+1)/a_n|" where "a_n=n e^(-n) "is "< 1, "then the series is convergent," )#
#color(blue)("and if the limit is >1, the series diverges")#

#lim_(n->oo)|frac{((n+1)/e^(n+1))}{(n/e^n)}|#

(Dividing is the same as multiplying by reciprocal of denominator)
#=lim_(n->oo)|frac{(n+1)}{color(red)((e^n))(e)}*frac{color(red)((e^n))}{n}|#

#=lim_(n->oo)|frac{(n+1)}{(n) (e)}|#

#color(magenta)("Use the fact that "lim_(n->oo)(frac{n+1}{n})=1" to simplify")#

#=lim_(n->oo)|1/e|#

#=1/e#, which is less than 1.

Since the ratio test gives a value less than one, the series is convergent by the ratio test.