A solid disk, spinning counter-clockwise, has a mass of #6 kg# and a radius of #3/5 m#. If a point on the edge of the disk is moving at #5/6 m/s# in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Apr 7, 2017

The angular momentum is #=1.5kgm^2s^-1#
The angular velocity is #=1.39rads^-1#

Explanation:

The angular velocity is

#omega=(Deltatheta)/(Deltat)#

#v=r*((Deltatheta)/(Deltat))=r omega#

#omega=v/r#

where,

#v=5/6ms^(-1)#

#r=3/5m#

So,

#omega=(5/6)/(3/5)=25/18=1.39rads^-1#

The angular momentum is #L=Iomega#

where #I# is the moment of inertia

For a solid disc, #I=(mr^2)/2#

So, #I=6*(3/5)^2/2=27/25kgm^2#

The angular momentum is

#L=27/25*25/18=1.5kgm^2s^-1#