Question #689a9

1 Answer
Apr 7, 2017

#pi/2; (7pi)/6; (11pi)/6#

Explanation:

cos 2t + sin t = 0
Substitute in the equation #cos 2t# by #(1 - 2sin^2 t)#:
#1 - 2sin^2 t + sin t = 0#
#- 2sin^2 t + sin t + 1 = 0#
Solve this quadratic equation for sin t
Since a + b + c = 0, use shortcut.
The 2 real roots are: sin t = 1 and #sin t = c/a = - 1/2#
Trig table and unit circle gives 3 solution:
a. sin t = 1 --> #t = pi/2#
b. #sin t = -1/2#, unit circle give 2 solutions:
#t = - pi/6# or, #t = (11pi)/6# (co-terminal),
and #t = pi - (- pi/6) = pi + pi/6 = (7pi)/6#