Find a MacLaurin Series in table 1 to obtain a series for f(x)= (x-sinx)/x^3 . Write the final answer in sigma notation?

1 Answer
Apr 10, 2017

#f(x) = (x-sinx)/x^3 = sum_(k=0)^oo (-1)^k x^(2k)/((2k+3)!)#

Explanation:

I do not see any Table 1, anyway you can start from the MacLaurin series for #sinx#:

#sinx = sum_(n=0)^oo (-1)^n x^(2n+1)/((2n+1)!)#

Extract from the sum the term for #n=0#:

#sinx = x + sum_(n=1)^oo (-1)^n x^(2n+1)/((2n+1)!)#

So:

#x-sinx = x - x -sum_(n=1)^oo (-1)^n x^(2n+1)/((2n+1)!) = sum_(n=1)^oo (-1)^(n+1) x^(2n+1)/((2n+1)!)#

and dividing by #x^3# term by term:

#(x-sinx)/x^3 = sum_(n=1)^oo (-1)^(n+1) (x^(2n+1)/x^3)/((2n+1)!) = sum_(n=1)^oo (-1)^(n+1) x^(2n-2)/((2n+1)!)#

We can express the series with an index starting from zero by substituting #k=n-1#, so that:

#(-1)^(n+1) = (-1)^(k+2)= (-1)^k#

#x^(2n-2) = x^(2(n-1)) = x^(2k)#

#(2n+1)! = (2(n-1)+3)! = (2k+3)!#

so that:

#f(x) = (x-sinx)/x^3 = sum_(k=0)^oo (-1)^k x^(2k)/((2k+3)!)#