I do not see any Table 1, anyway you can start from the MacLaurin series for #sinx#:
#sinx = sum_(n=0)^oo (-1)^n x^(2n+1)/((2n+1)!)#
Extract from the sum the term for #n=0#:
#sinx = x + sum_(n=1)^oo (-1)^n x^(2n+1)/((2n+1)!)#
So:
#x-sinx = x - x -sum_(n=1)^oo (-1)^n x^(2n+1)/((2n+1)!) = sum_(n=1)^oo (-1)^(n+1) x^(2n+1)/((2n+1)!)#
and dividing by #x^3# term by term:
#(x-sinx)/x^3 = sum_(n=1)^oo (-1)^(n+1) (x^(2n+1)/x^3)/((2n+1)!) = sum_(n=1)^oo (-1)^(n+1) x^(2n-2)/((2n+1)!)#
We can express the series with an index starting from zero by substituting #k=n-1#, so that:
#(-1)^(n+1) = (-1)^(k+2)= (-1)^k#
#x^(2n-2) = x^(2(n-1)) = x^(2k)#
#(2n+1)! = (2(n-1)+3)! = (2k+3)!#
so that:
#f(x) = (x-sinx)/x^3 = sum_(k=0)^oo (-1)^k x^(2k)/((2k+3)!)#