How do you solve #5sqrt(a-3)+4=14# and check your solution?
2 Answers
Explanation:
reduce
divide
square to both sides
add
we check Left hand side to prove right hand side by plug in
Explanation:
#color(blue)"Isolate"# the root on the left side and place numeric values on the right side.subtract 4 from both sides.
#5sqrt(a-3)cancel(+4)cancel(-4)=14-4#
#rArr5sqrt(a-3)=10# divide both sides by 5
#(cancel(5)^1sqrt(a-3))/cancel(5)^1=10/5#
#rarrsqrt(a-3)=2larrcolor(red)" root isolated on left side"#
#"to'undo' the root "color(blue)"square both sides"#
#(sqrt(a-3))^2=2^2#
#rArra-3=4# add 3 to both sides.
#acancel(-3)cancel(+3)=4+3#
#rArra=7#
#color(blue)"As a check"# Substitute this value into the left side and if equal to the right side then it is the solution.
#5sqrt(7-3)+4=5sqrt4+4=(5xx2)+4=14#
#rArra=7" is the solution"#