How do you find the product #(4a+7)(9a^2+2a-7)#?

1 Answer
Apr 18, 2017

See the entire solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(4a) + color(red)(7))(color(blue)(9a^2) + color(blue)(2a) - color(blue)(7))# becomes:

#(color(red)(4a) xx color(blue)(9a^2)) + (color(red)(4a) xx color(blue)(2a)) - (color(red)(4a) xx color(blue)(7)) + (color(red)(7) xx color(blue)(9a^2)) + (color(red)(7) xx color(blue)(2a)) - (color(red)(7) xx color(blue)(7))#

#36a^3 + 8a^2 - 28a + 63a^2 + 14a - 49#

We can now group and combine like terms:

#36a^3 + 8a^2 + 63a^2 - 28a + 14a - 49#

#36a^3 + (8 + 63)a^2 + (-28 + 14)a - 49#

#36a^3 + 71a^2 + (-14)a - 49#

#36a^3 + 71a^2 - 14a - 49#